Imagen de portada de Amazon
Imagen de Amazon.com

Grokking deep learning / Andrew W. Trask.

Por: Idioma: Inglés Editor: Shelter Island : Manning, 2019Descripción: xx, 309 pages : illustrations ; 24 cmTipo de contenido:
  • texto
Tipo de medio:
  • no mediado
Tipo de soporte:
  • volumen
ISBN:
  • 9781617293702
Otro título:
  • Deep learning
Tema(s): Clasificación CDD:
  • 006.31 T69g
Recursos en línea:
Contenidos:
Introducing deep learning : why you should learn it -- Fundamental concepts : how do machines learn? -- Introduction to neural prediction : forward propagation -- Introduction to neural learning : gradient descent -- Learning multiple weights at a time : generalizing gradient descent -- Building your first deep neural network : introduction to backpropagation -- How to picture neural networks : in your head and on paper -- Learning signal and ignoring noise : introduction to regularization and batching -- Modeling probabilities and nonlinearities : activation functions -- Neural learning about edges and corners : intro to convolutional neural networks -- Neural networks that understand language : king - man + woman ==? -- Neural networks that write like Shakespeare : recurrent layers for variable-length data -- Introducing automatic optimization : let's build a deep learning framework -- Learning to write like Shakespeare : long short-term memory -- Deep learning on unseen data : introducing federated learning -- Where to go from here : a brief guide.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Recursos Electrónicos Recursos Electrónicos Sede Quito Col General 006.31 T69g (Navegar estantería(Abre debajo)) Disponible Disponible en Biblioteca Digital PUCE
Libro Libro Sede Quito Primer piso Col General 006.31 T69g (Navegar estantería(Abre debajo)) Disponible PUCE213803
Total de reservas: 0

Includes index.

Introducing deep learning : why you should learn it -- Fundamental concepts : how do machines learn? -- Introduction to neural prediction : forward propagation -- Introduction to neural learning : gradient descent -- Learning multiple weights at a time : generalizing gradient descent -- Building your first deep neural network : introduction to backpropagation -- How to picture neural networks : in your head and on paper -- Learning signal and ignoring noise : introduction to regularization and batching -- Modeling probabilities and nonlinearities : activation functions -- Neural learning about edges and corners : intro to convolutional neural networks -- Neural networks that understand language : king - man + woman ==? -- Neural networks that write like Shakespeare : recurrent layers for variable-length data -- Introducing automatic optimization : let's build a deep learning framework -- Learning to write like Shakespeare : long short-term memory -- Deep learning on unseen data : introducing federated learning -- Where to go from here : a brief guide.

No hay comentarios en este titulo.

para colocar un comentario.
Recursos Repositorio Herramienta Guias Normativa


 Nuestras Alianzas